Adaptive and compressive matched field processing.
نویسندگان
چکیده
Matched field processing is a generalized beamforming method that matches received array data to a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented using basis pursuit, the matched field problem is reformulated as an underdetermined, convex optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching replicas within the dictionary when using multiple observations and/or frequencies. For a single source, theory and simulations show that the performance of CS and the Bartlett processor are equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accommodate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS offers modest localization performance improvement over the adaptive white noise constraint processor. SWellEx-96 experiment data results show comparable performance for both processors when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays less ambiguity, demonstrating it is robust to data-replica mismatch.
منابع مشابه
A minmax approach to adaptive matched field processing in an uncertain propagation environment
Adaptive array processing algorithms have achieved widespread use because they are very effective at rejecting unwanted signals (i.e., controlling sidelobe levels) and in general have very good resolution (i.e., have narrow mainlobes). However, many adaptive high-resolution array processing algorithms suffer a significant degradation in performance in the presence of environmental mismatch. Thi...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM AND STEPWISE REGRESSION FOR COMPRESSIVE STRENGTH ASSESSMENT OF CONCRETE CONTAINING METAKAOLIN
In the current study two methods are evaluated for predicting the compressive strength of concrete containing metakaolin. Adaptive neuro-fuzzy inference system (ANFIS) model and stepwise regression (SR) model are developed as a reliable modeling method for simulating and predicting the compressive strength of concrete containing metakaolin at the different ages. The required data in training an...
متن کاملMatched Field Processing for Active and Passive Sonar
The complexity and dynamics of shallow water limit the performance of adaptive array processors. Matched field processors are especially sensitive since they require accurate environmental models to construct signal replica vectors. The long term goals are i) to determine processors performance limits and ii) to develop robust algorithms for adaptive array processing in shallow water for both a...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملCompressive Sensing for Inverse Scattering
Compressive sensing is a new field in signal processing and applied mathematics. It allows one to simultaneously sample and compress signals which are known to have a sparse representation in a known basis or dictionary along with the subsequent recovery by linear programming (requiring polynomial (P) time) of the original signals with low or no error [1–3]. Compressive measurements or samples ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 141 1 شماره
صفحات -
تاریخ انتشار 2017